17 research outputs found

    Non uniform (hyper/multi)coherence spaces

    Full text link
    In (hyper)coherence semantics, proofs/terms are cliques in (hyper)graphs. Intuitively, vertices represent results of computations and the edge relation witnesses the ability of being assembled into a same piece of data or a same (strongly) stable function, at arrow types. In (hyper)coherence semantics, the argument of a (strongly) stable functional is always a (strongly) stable function. As a consequence, comparatively to the relational semantics, where there is no edge relation, some vertices are missing. Recovering these vertices is essential for the purpose of reconstructing proofs/terms from their interpretations. It shall also be useful for the comparison with other semantics, like game semantics. In [BE01], Bucciarelli and Ehrhard introduced a so called non uniform coherence space semantics where no vertex is missing. By constructing the co-free exponential we set a new version of this last semantics, together with non uniform versions of hypercoherences and multicoherences, a new semantics where an edge is a finite multiset. Thanks to the co-free construction, these non uniform semantics are deterministic in the sense that the intersection of a clique and of an anti-clique contains at most one vertex, a result of interaction, and extensionally collapse onto the corresponding uniform semantics.Comment: 32 page

    An Abstract Approach to Stratification in Linear Logic

    Full text link
    We study the notion of stratification, as used in subsystems of linear logic with low complexity bounds on the cut-elimination procedure (the so-called light logics), from an abstract point of view, introducing a logical system in which stratification is handled by a separate modality. This modality, which is a generalization of the paragraph modality of Girard's light linear logic, arises from a general categorical construction applicable to all models of linear logic. We thus learn that stratification may be formulated independently of exponential modalities; when it is forced to be connected to exponential modalities, it yields interesting complexity properties. In particular, from our analysis stem three alternative reformulations of Baillot and Mazza's linear logic by levels: one geometric, one interactive, and one semantic

    Thick Subtrees, Games and Experiments

    Get PDF
    Abstract. We relate the dynamic semantics (games, dealing with interactions) and the static semantics (dealing with results of interactions) of linear logic with polarities, in the spirit of Timeless Game

    Simulation d'économies monétaires : invariance de la consistance des stocks et des flux dans un style monadique

    No full text
    International audienceAn agent-based simulation of a monetary economy as a whole should be stock-flow consistent [7]. We aim at providing a compile-time verification of the preservation of this invariant by the computation. We guarantee this invariant by wrapping the accounting operations in a monad. Our objective is to increase the confidence in the SFCness of an existing complex simulation with a minimal refactoring of code

    A characterization of the Taylor expansion of lambda-terms

    No full text

    Non-uniform (hyper/multi)coherence spaces

    No full text

    An Abstract Approach to Stratification in Linear Logic

    No full text
    Abstract We study the notion of stratification, as used in subsystems of linear logic with low complexity bounds on the cut-elimination procedure (the so-called "light" subsystems), from an abstract point of view, introducing a logical system in which stratification is handled by a separate modality. This modality, which is a generalization of the paragraph modality of Girard's light linear logic, arises from a general categorical construction applicable to all models of linear logic. We thus learn that stratification may be formulated independently of exponential modalities; when it is forced to be connected to exponential modalities, it yields interesting complexity properties. In particular, from our analysis stem three alternative reformulations of Baillot and Mazza's linear logic by levels: one geometric, one interactive, and one semantic
    corecore